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TECHNICAL MEMORANDUM NO. 25

To: Cyrus J. Creveling, Code 561
Netional Aeronautics and Space Administratlon
Greenbelt, Maryland

Re: Contract No. NAS 5-408

Subject: Detection of Signals in Colored Noise

SUMMARY

The purpose of this memorandum is twofold: to extend
the concepts discussed in Technical Memorandum No. 2 and to lay
the groundwork for Technical Memorendum No. 26, Technical Memo-
randum No. 2 was concerned with the basic concepts of signal de-
sign and signal reception when the channel interference is addi-
tive white gaussian noise. By white noise we mean that the noise
power per unit bandwidth is the same at all frequencles of interest.
In this case the key results are:

1. The optimum receiver should use correlation techniques (or
the equivalent) in which the received signal is multiplied with each
of the possible signals that could have been sent. The product sig-
nals are then averaged over the signal duration. That correlation
process ylelding the greatest output at the end of the signal dura-

tion indicates which signal is most likely to have been the one sent.

N
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Equivalent techniques are in some cases the same as synchronous
detection, while in others the same as filtering (matched filter),
2. The design of optimum signals, when the interference is

white noise, is based on the distance parameter

T
D = J [s,(t) - s (£)]7 at
0

which indicates the distinguishability between two signals so(t)
and sl(t) as an equivalent amount of energy per message. For
example, if PSK (180°) is used and the sinusoids are of peek ampli-
tude A,

D[PSK (180°)] = 2A® T
If FSK is used ’

D[FsK] A2 T

Hence PSK (1800) signels have 3db more distinguishability for the
same power and duration as FSK signals.

When the interference is additive gaussian, but not white
(i.e. the noise power per unit bandwidth is not the same at all
frequencies), correlation techniques are again found to be opti-
mum, but the received signel is correlated not with the possible
message signals, but with modified signals. These modified sig-
nals are obtalned from the characteristics of the message signals

and the noise power spectrum. The form of these modified signels
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1s not obvious, although the results obtained for specific cases
agree with intuitive notions. The key results are as follows.

Consider that there are two possible signals the trans-
mitter can send, s,(t) and s,(t). Let the noise power spectrum
be W(w) and the correspondingVautocorrelation function be R(71).
Now if y(t) is the received signal, the optimum receiver is

based on correlation - i.e., forming

T
J y(t) £(t) dt

0

in which T is the signal duration and f(t) is the solution of the

integral equation

T
J R(t-1) £(1) & = sy(t) - 8 (t)

0

Basic to the solution of this equation is the corresponding homo-

geneous Ilntegral equation

T
J R(t-1) (1) dt = o® o(t)

0

As will be discussed in Technical Memorandum No. 26, sig-
nels found from sums of those waveforms which satisfy this latter

equation have neat properties. One significant property is that
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bandwidth limitations can be imposed on the selection of sig-
nal waveforms by selecting an appropriate noise power spectrum,
albeit that the true noise power spectrum is white. In effect
the selected nolse power spectrum (chosen cup-shape) acts as &
weighting function that concentrates the signal power into &

narrow range of frequencies.



DISCUSSION

I. Introduction

The decision problem encountered at the receiver of a
communication system may be formalized by considering that the
receiver is trying to determine which of two possible signals
is more likely to have been the transmitted signal. Analysis
of this type of binary decision can be extended to cover multi-
signal transmissions by simply considering the possibilities
two at & time. For this reason we will therefore consider that
there are only two possible signals the transmitter can send,
8,(t) and s, (t).

As discussed in Technical Memorandum No. 2, in a broad
sense the receiver is a computer - although in many cases a fairly
simple analog computer. From the incoming signal, y(t), the re-
ceiver calculates which possible transmitted signel, so(t) or
5, (t), more likely would result in y(t) being received. Formally
the probability that so(t) sent results in y(t) being received,
ply(t)/so(t)], and the probability that 5, (t) sent results in
y(t) being received, ply(t)/s,(t)], are calculated and the like-
lihood ratio

ply(t)/s5(t)]
ply(t) /sy (t)]




is considered. This ratio (or more usually some function of it)
is present in the receiver as a voltage level. For completely
automatic operstion thls voltage level is compared with a pre-
set threshold as a means of deciding whether so(t) or s;(t) was
sent. Alternatively, the voltage level can be presented to an
operator for the final decision. The choice of the threshold
level depends on the degree to which each signal is a priori ex-
pected (if this is known), the relative costs of making errors,
or some other value Judgment. For example, as discussed in
Technical Memorandum No. 2, a threshold level can be used which
corresponds to minimum error probability.

Since the noise i1s additive the conditionel probability
of the form ply(t)/s(t)] is simply the probability that the noise
waveform is the difference [y(t) - s(t)]. The decision as to
whether s,(t) or s, (t) was more likely the signal sent is there-
fore the same as deciding if the noise waveform was more likely
no(t) = [y(t) - sp(t)], or ny(t) = [y(t) - s ()],

To use this fact the possible signals s (t) and s, (t),
and the received signal y(t) are sampled at instants of time tp
apart such that there are N samples over the waveforms of dura-
tion T. The channel is presumed distortionless so that the kth
kth

sample of the signal sent causes the sample of the received

signal. If we let

¥



8ox Pe the value of so,(t) at t = kt,
8;; be the value of s,(t) at t = ktp
Y, Dbe the value of y(t) at t = ktA
then
ply(t)/s,(¢)] = Lin ply1,¥as-+-Yy/S01 58035+ +8oN]

A
is the same as expecting the interference to have the sampled

values
[ = 7N - 80
Ny = Yz = Bo2
Dy = YN - SoN
Similarly,

ply(t) /s, (t)] = Lim plyys¥ase+-Yn/%1155125 ¢+ «B1N]

A

is the same as expecting the interference to have the sampled

values
L, = ¥ - 81
ng = Yz - B3
ny = ¥y - 81y



Comment on rigor: This procedure is satisfactory if the total
noise power is finite., If the total noise power 1s infinite,
the "samples" are integrated values of the signals over each

duration th. Alternatively, the noise power density spectrum
can be truncated at some high frequency f. Then as tp—0,

f- oo. .

For the case in which the interference is white gaussian
noise the sampled values of the interference are independent and
the analysis is greatly simplified. In this case, the joint prob-
ability that the sampled values of the nolse are Ny s, eele. Dy
can be written as the product of the individual or marginal proba-

bilities. Thus

p(n1,n2,...nk...nN) = p(n) p(ng)...p(ny)...p(ny)

for which
-n® f2w? £

) =
pln Vo W2 f

since p(n) has a Gaussian distribution and the noise power per
unit bandwidth is W3, The remainder of the procedure for deter-
mining the optimum receiver is straightforward (See Technical
Memorandum No, 2),except for simplicity the log of the likelihood
ratio is used in place of the likelihood ratio. As review, let us

outline this procedure.

P(nl ,na,...nk...nN) =

O



Thus
Z (¥-80x)°
P(Y1:Yz,---Yn/so1ysoz:---sN} e ngf
- T =
f]
SEE z (Yk-51k)
P(yIYQ:"-YN/SII:SIS:'NS:LN) e

or the log of the llkelihood ratio is

2 [ e - ]

In the limit as t, = -Jé- ~ 0, this becomes

T
- —2:;— {J [y(t) - 85(¢)]? - [¥y(t) - 8 (t)]a} dt
0

in which T is the duration of the signals. This quantity is the
actual voltage level "calculated" by the receiver as a basis for
deciding which signal is present. If we multiply the terms out
and discard the factor # W2 as being a scale factor, then the de-

cision voltage becomes

T T
2 j y(6)[8o(t) - sy (t)] at + J [s2(t) - 83(t)] at

0] 0]

The significant part of this expression is



T
[ y(t) s (t) - 8 (t)] at

0

since this is the only component which depends on the actual
signel sent. The remainder mey be included in the selection

of the threshold level. Now, if we let
£(t) = [8,(t) - & (t)]

we obtein the result that the received signal y(t) should, for

optimum detection, be correlated with f(t) and the output of the
correlator (or the equivalent) be used to decide which signal was
sent. For the case in which the interference is white noise, the
signal to be generated at the receiver ig the difference of the

message signals. As we shall see for the colored noise case, the
optimum receiver will be similar, but £(t) will include not only

the signal structure but the noise structure as well.

1l



II. Details of the Direct Solution

When the interference is colored noise the joint proba-
bility p(nl,ne,...nk...nN) cannot be written as the product of the
marginel probability p(n) because the noise is no longer independent
from one sample to another. However, we can use the fact that the
noise is gaussian by using the N'R order Joint gaussian distribu-
tion. The proceiure is algebraically complex but not insurmountable.
To reduce this complexity matrix notation will be used.

The joint gaussian distribution is not readily written in
terms of the corresponding power spectrum, but rather in terms of
the autocorrelation function. Even then the résults are not ob-
vious or easily interpreted,

Let R(t) be the autocorrelation function of the noise. The
autocorrelation function is the Fourier transform of the noise power
spectrum. Let R,be the matrix formed from the values of the auto-

correlation function. That is

Ri1 Rya .. Ri?ﬂ

Ray Rao «¢+ Roy

eP e s s e s BB

ENI RNg cs . RN-N'—

where

[

R(t,-1,

Ron

R
™D



and

T corresponds to the mth

- semple time

1, corresponds to the n®h sample time.

In addition to the above array another matrix is needed. ILet

DERITIEE K{E{

A21 Azz «e¢ A2y
A =

se e s B s eI BEENES

pw A eee A

in vhich ® is the inverse of . That is if the elements of A

were the coefficients of a set of equations such as

i = Ri1 X + R X +... + Ry
Y2 = Ry X3 + Rog X3 + ... + RN XN
YN = RN1 Xl + RNQXQ + e +RNNXN

then the inverse set, or the solution, has the elements of A

as the coefficlents - i.e.

X

M1y *f Mz ¥ +* ..o FMNIN

8

Agy Ya t Aag Y2 t+ ... t AN YN

Lo



Now we can write the joint gaussian distribution that the noise

amplitudes at the N sample times are n,, ng,...nx, ...Ny 88

N N
1 1
p(n]_ 2 ng--.nN) = T% exp {- -E— Z z )\mn nm_ nn}
(Zn) 'A‘ m=1 n=1
where
A = {Xp,} is the inverse of the autocorrelation matrix
|A] = determinant corresponding to A

If, as for the case of white noise, we form the log of the likeli-
hood ratio, the result is
1 N XN
- 5 {z E )\mn(Ym-Som)(yn-son}

m=1 n=1

N N
+ ..]2_'. { z z Amn (Ym=8ym) (¥n-8, n)}
m=1 n=1 '

The factor -%— can be included in the decision threshold. The
voltage level or the test statistic, the receiver "evaluates"
is this quantity or the equivalent. By multiplying out, the

test statistic can be simplified to
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N

N
>. E: Mon(= Y¥n * Som Yn * Ym Son - Som Son

m=1 n=1

+Yu¥n - Sim ¥Yn = Ym Sin t* Sim s1n>
Noting
N N N N
z 7 8om ¥n = 2 Ym Bon

and similarly for s, (t), the test statistic reduces to

N N
kmn(Zym Son - 2¥m 51n - Sam Son * Sim E1n)
m=1 n=1

The last two terms of the test statistic are deterministic.
Hence the test statistic can be simplified to
N N

' )\Inn(ym)(son-sln)
m=1 n=1

Let
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T
J‘ £(t) y(t) at
0

or as N_— oo

Thus a result is obtained for the colored noise case which is
similar to that obtained for the white noise case - namely, that
the optimum receiver should employ correlation. Instead of the
locally generated signal at the receiver being the difference sig-
nal

£(t) = [sg(t) - 8 (+)]

it should be determined from the sampled values, . g
N
£ = E; Kmn(sOn - sln)
n=

To do this we note that the matrix {\,,} and {Ryy} are inverses of
each other. Hence the set of simultaneous equations for the sampled

values of £(t) - i.e.

£1 = Ma1(80p - 811) + Ay (Boz - 812) *+ «ov Min(8oN - 817)
fg = )\21 (801 - 511) + )\22(502 - 813) + .o XQN(SON - SIN)

..!l'co’lo-ul!l.oll'lo-uchtooocilool'!l'l.......ll‘l..!.ol.

fy = Am (801 - 811) #+ Anz(8oz = 812) + «.s Avn(BoN - B1N)

has the solution
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(Boa - 812)

(soy - S1iy) = Bmfi + Byafa + «.. Byyfy

or for all n
(son - Sipn) = E;anfm
m=

In the limit as tA—oo, N - 00 and

T
[s,(t) - 8 (8)] = I R(t-1) £(7) dr
0

This is the basic equation from which f(t) is determined. In
the case in which the noise is white, R(t) is a delta function =~

i.e. R(t) = 2w §(t). In this case
(s (8) - 8, (£)] = 28 £(t)
or neglecting the scale factor
£(t) = [s55(t) - 8 (t)]

as before.

In order to design the optimum receiver it is necessary
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to solve the integral equation
T
[s,(t) - 8 ()] = J R(t-1) £(7) dr

0

for the waveform f(t). Once this waveform is known the re-
ceived signal can be correlated (or an equivalent operation
performed) with f(t) and the output of the correlator compared
with>a preset threshold to decide if sy(t) or s, (t) is more
likely the signal sent.

To determine f(t) we proceed in a manner analogous to
solving ordinary differential equations. That is, the homogen-
eous equation is solved for first. The homogeneous integral

equation is
T

o® o(t) = ‘[ R(t-7) (1) dt
0

This equation has the trivial solution ®(t) = 0. It also has
non-trivial solutions for certain definite values of g. Each
value of g for which there is & non-trivial solution is called
an eigenvalue, and the corresponding function ¢(t) is called an

elgenfunction.

Diversion

An integral equation of the form
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T
o® o(t) = Lf R(t-1) (1) ar
0

has solutions of the same character as an ordinary differential
equation plus boundary conditions. For example, consider the
ordinary differential equation
@ y(t)
dt?

+a?y(t) = 0
This has the trivial solution y(t) = O. It has the general non-
trivial solution

y(t) = A cos ot + B sin wt

in which A and B are arbitrary, and o can be any constant. If,

however, we impose the boundary conditions

y(0) = 0
y(1) = 0
then the solution becomes
y(t) = B sin #ntn

Thus, only if the constant w equals wm for n =0, £ 1, * 2,...
is there a non-trivial solution to the differential equation which

also satisfies the boundary conditions. These values of w for

15
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which a non-trivial solution exists are called eigenvalues and
the corresponding functions are called eigenfunctions.

A homogeneous ordinary differential equation with
boundary conditions can be converted to an integral equation.
For example, consider the above differential equation with the

boundary conditions. These correspond to the integral equation

T
o y(t) = J’x(t,f) y(t) dt

0
in which K(t,T), the kernel, is

K(t,tr) = (1-t) 7 0

I
-
IN
cf.
AN
-

= t(1-7) 0

IN
d
1A
A
1A
[

This type of kernel, called triangular, is shown below.

K (t,T)
+(I-t)

~ ~~ /

' N
! \
|

> T

o T 1

Because of the relation between integral and differential equations,
one valusble technique for solving integral equations is to determine
the corresponding differential equation.

End of Diversion

20
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For convenience consider the solution of this equation
corresponding to the lowest value of o® to be the first eigen-
function, the next lowest, the second eigenfunction and so on.
Then one interesting property of these solutions is that they
are orthogonal and complete., Thus if wk(t) and mm(t) are two

solutions

T
( 0 (t) 9y(t) = 0 if k#m,

&
0

This property makes it easy to expand the signal waveforms in

terms of these functions, for if we let

5,(t) = Cp 91 (t) +Cp 9a(t) + C5 @a(t) +.u
Then
T T T
fso(t) op(t) dt = Cy [ (t) @p(t) dt + ... C rmi(t) at + ...
v
0 9 0

and since the ¢'s are orthognal

T T
rso(t) o (t) dt = Cy J” 2 (t) dt

L

0 0

Hence the coefficients of the expansion are given by
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Note that since the equations are homogeneous the ¢'s can be
multiplied by any factor and still remain solutions“of the in-

tegral equation. By properly selecting this factor we can nor=-

malize the ¢@'s so that

T

jcpi(t) at = 1
0

for each function, Then

T
Cy = j" 5,(t) ¢ (£) dt
0

Similerly if

Then

2%
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If now we wish to solve the non-homogeneous integral equation

for the correlation signal f(t) - i.e. solve

T
J" R(t-7) £(r) dv = s.(t) - s, (t)

0

We seek a series solution for f(t) of the same form

£(t) = e @, (t) +e5 pa(t) +....
We note
T T 00
j R(t-1) £(7) ar = J‘ R(e-1) { T e (1)} ar
o k=1

T

00
Zek f R{t-7) Py (1) dr
k=l 0

But since wk(t) is a solution of the homogeneous equation

T
J’ R(t-1) ()
0

of 0y (t)

T
(o0}

JHR(t-T) f(r) dr ;1 ey ci wk(t)
0 k=1



Correlato Voltege ‘|
.4 signal —2 (t)— relator

)
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This must equal s,(t) - s (t), or

o0
so(t) = s (8) = ) (C-dy) 9k(t)
k=1

Equating coefficients we find

Ck'dk

w = (—5)

Sk

or
- 4

(- ) (D)
k=1 9

From the relation one form of the optimum receiver is found to be

2
k

Voltage
Divider

o, (t) | Correlator

Divider

Voltage |
0} (t)—— Correlator Divider
! }
1 \ I
1 | ' |
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Each voltage divider is adjusted for the appropriate factor -
the k*h divider for (Cy-d))/of. Note that since of increases
for increasing k an infinite number of correlators and dividers
is not required for a practical system as the contribution to
the sum becomes very small for high k., It can be shown that
o; is the variance or mean squared noise of the output of the
xR correlator. Thus the high noise correlator outputs are

properly weighted down by the divider circuits.
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III. Details of the Indirect Solution

In order to gain further insight into the basis and opera-
tion of an optimm receiver for detecting signals in colored noise,
let us start anew and consider this problem independently of the
previous analysls.

Consider that one of two known signals so(t) and si(t)
is trensmitted for a fixed interval 0 < t < T. The transmitted
signal is corrupted by additive stationary gaussian noise of a
known spectral density or, correspondingly, a known autocorrela-
tion function. The decision to be made at the receiver is whether
so(t) or si(t) was actually sent.

We could proceed as before and base the likelihood ratio
on the values attained by the received signal y(t) at intervals
of time spaced tp apart (tp = O in the limit). However, these
observed values being cofrelated led to the algebraic difficul-
ties previously considered. Specifically, the Jolnt conditional
probability p(y1, ¥2, ¥3 -.- /So1, So2, Sos ... ) cannot be written
as the product of probabilities of the form p(yj/soj) unless the
noise is white. |

Now the set of values (yi, y2 ... ) can be looked upon
as a set of observable coefficients or coordinates on which the
likelihood ratio is based. Note that the set to use is not sug-

gested by the likelihood ratio and must be independently sought.
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The set of coefficients or coordinates previously used was the
sampled values of the received signal (in the limit the instan-
taneous signal amplitude). Here we shall use what appears to be
a different set of observable coordinates and later show they are
in effect the same.

One useful suggestion is to find a set of observable
coordinates ykx that are uncorrelated but can be generated fram

the received signal y(t) by linear operations. We desire to have

y(t) = Z vie ¥(t)
T :
in which, for convenience, the set 3,(t) is orthonormal with re-
spect to the internal 0 < t < T. This permits the coordinates

(or coefficients) yx to be computed from

T
Yk = J- @k(t) y(t) dat
0

Thus the optimum receiver will be as previously shown, but the
voltage division ratios remain to be determined. In the receilver
any one of the coefficients yj could be generated by passing the
received signal y(t) through a filter matched to the waveform
@k(t), 0<t<T. At the end of the observation interval the
output of the filter would be the coefficient yy for the received

signal y(t). Note that yx is a random variable in the sense that

(X
2 .
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if so(t) is repeatedly sent, then the different waveforms the
random noise interference takes ylelds different values for yx.
Thus y) has a certain probability distribution when sy(t) is sent
and a different (we hope) probability distribution when sz(t) is
sent.

[2 ant
One possible orthonormal set is { VE%;-, N cos T

q/%sin 2;’0 , ...J—%—cosﬁ%@-—, —-%—-sin—g%n—t—, }

However we not only desire the convenience of an orthonormal set,

but that the set {yx} corresponding to {:ggt;} being sent be com-

posed of random variables which are independent. Then,

plyi, ¥2,.ecee /[ 80(t)] = p[¥4/s0(t)] p[V3/s0(t)] ...

which is the relation desired.

We note, since the noise 1s additive, that
y(t) = s(t) + n(t)

in which s(t) stands for either s,(t) or si(t), and n(t) is the

additive gaussian interference. Then

T

¥k = J‘ Be(t) y(t) at
0
T T

Vi = J‘ #(t) s(t) at + j1 .(t) n(t) at
0 0
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Thus y) has a gaussian distribution. The mean velue is
T
mean y, = j‘ . (t) s(t) dt
| 0]

and the variance is

1
A

I

I T
J‘ J‘ 3,(t) (1) < n(t) n(t) > dt dr
0 0

2
variance y. = 8, (t) n(t) at ] >

O3

]

in which R(t=-t) is the autocorrelation function of the noise.

$x(t) ¥y(r) R(t-1) dt dar

Cl—g

Now we desire Y3s¥x to be independent for J % k in the sense that

the random parts of Y3, Yk are to be independent. This means

T T
< J $1(t) n(t) dt - j 35(1) n(r) dr > =0
0 0
T T
or jﬂ J‘ 8y (t) §J(T) < n(t) n(r) >dt dr =0
0 O
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T T
or J J di(t) @J(t) R(t-r) dt dr =0 for J # k
0 0

Assume that we can solve the sbove equation for an orthonormal

set {Qk(t)} such that the observable coordinates are independent.
Further assume that the set {8x(t)]} 1s also complete. Then the
receiver can generate, by means of & bank of filters matched to
the set {8)(t)}, a set of outputs yx at the end of the observation

interval. As can be seen the output yx cen be written as

Yk = ax + zx 1if sg 1s sent
or Yk = b + zx 1if si is sent
T
in which ax = ‘[ so(t) 8x(t) dt
0
T
by = J sa(t) 8x(t) dat
0

and zx is a random variable of zero mean, different zx's being un-
correlated and hence the zy's are mutually independent gaussian
random variables. As before the likelihood ratio can be taken

and sgaln, for convenience, the natural logarithm of the likelihood

ratio considered as the test statistic. This is, using the first

30
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N coordinates,

N
(a )2 (bx - yx)®
'L{ 2 k - Yk +z bx 2yk }

k=1 k=1 Ok

in which 0y® 1s the variance of zy.
The analogy to the white gaussian noise problem is now
quite evident. The main problem is to generate the orthonormal

set {#,(t)}. To do this we note that the equation

T T
J j‘ 8,(t) 83(7) R(t-1) dt dr =0, £k
o 0
T
holds true if j’ QJ(T) R(t-1) a1 =\ Qj(t)
0
for then
T T T
J\ j‘ #x(t) QJ(T) R(t-T) dt dr = J dx(t) - Ay 83(t) dt
o 0 0
=0 1if k #J

)‘J ifk =j
T T

Since J I Qj(t) §J(T) R(t-r) dt ar =032, the variance of zj,
0O 0

then l'j = 0'32

31
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Hence to find the orthonormal functions Qj(t) we need to solve

the homogeneous equation

T
J 8;(1) R(t-1) dr =04% 85(t)
0

in which R(r) is the autocorrelation function of the additive
gaussian nolse interference.

To find the actual quantity the receiver is to evaluate,
note that by using the first N coordinates the log of the likeli-

hood ratio is

N N
’L‘{' z o -ayk)a * z L ‘zyk)a }

k=1 K k= ok

z bk yx(ak - bk)
2
k—-l k—l Tk

or

The first term 1s a deterministic, since this depends only on the

signal structure - i.e.,

T
ax j‘ so(t) ¥(t) dt
0

T
bk J s1(t) #x(t) dt
0
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The value of the second term depends on which signal is sent and,
of course, the noise. Therefore the likelilhood ratio test 1s

based on comparing

N
Z ¥k (ax - bx)
kel '

with a threshold.
Before considering the limiting behavior as N-QD, it

is convenient to introduce

N
fN(t) = z _(_a%ié})i)_ Qk(t)
=1

If ok? was independent of k, for example oka= 1, then

o0 (e 0]
lim  £y(t) = ). ek k() - ), by Ek(t)
N = oo k=1 k=1

so(t) - s51(t)

Otherwise the relation is not as simple.
To write the test statistic in terms of fy(t) we note

that

N N
) (b® - &%) ) Yk(ek - bk)
k=1 oK" -1 K"

can be wriltten as
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N
3 Z (bx + ak)(bk -8 yk(8ax - bk)
g2

k=1 k

or

T
v { of [oa(t) + s()] ay(t) at } { by - ay }
’ kZ:L oy -

[ j y(t) &k(t) d.t] [ak - bk]

k=l

T
J[y(t) RERCRETNON z NEECTLS RN
5 k=1

\,Nﬁ/

This is fy(t)

T
or j it) [y(t) - so(t) * sa(t) ]dt
0

2

Formelly if N = o, the test statistic becomes

T
J‘ o [y - 220220 7,
0

Note that since f(t), so(t), and si(t) are deterministic, the

test statistic can be simplified to



T
]\ y(t) f£(t) dat
0

Thus detection in colored noise is by correlation. Instead of
correlating the received signal with [so(t) - si(t)] as for white
geussian noise, however, the related signal f(t) is used. To de-

termine the integral equation for f(t), we note, by definition,

N
£y(t) = z __(.Ek_'_a'%.)_ 8 (t)
21 Ok

and that fy(t) is thus the solution of

T

T
N
J R(t-1) fy(r) dr = ) j R(t-7) —(—%;—bl‘—)— XORY
k

k=1
0 0

N T
- zl (o - P J‘ R(t-r) #y(r) dr
X-

by definition of &(t)
= O'kz Qk(t)

N

= Z (ax - b)) ¥x(t)
k=1
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As N - o, at least formally, f(t) is the solution of?

T
j‘ R(t-1) f(r) dr = so(t) - si(t)
0

This result, together with the fact that the receiver is to compute

T
J y(t) £(t) at
0

specifies the optimum recelver.
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IV. A Simple Exemple

Consider the case in which the power spectral density of

the noise is
Wo(w) = A2 + B2 of (double-sided spectrum)

This can be considered the "video-noise" corresponding to the
synchronous detection of an r-f signal, or a "weighting function"

representing the receiver bandpass characteristics.

+00
Then R(T) ='-§%- ‘[ (A2 + B® of] eI aw
-0

=A% §(r) - B2 8" (1)

in which &(1) = Dirac delta function

§'' (1) = Second derivative of the Dirac delta function.

The orthonormal functions @k(t) are solutions of

T

ck2 P(t) = J 3y (T) R(t-r) ar

0

37
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T
or 032 & (t) = J‘ 3x(7) [A® §(t-7) - B2 §''(t-7)] ar
0

A% g (t) - B® 3)'(t)
Thus the functions ék( t) are solutions of the differential equation
B2 &, '(t) + (042 - A2) 8 (t) =0

subject to the condition

T

J Qk(t) Qn(‘t) at = skn
0 .

The solutions are

O’kz - Aa O‘kz - Aa
ki cos t — 5 and ko sin t —F

the requirement

T
\[ B 8 At = Syp
0

giving

o> - AZ 2rk

or oK A2+< 2;k>B2

3&
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The functions 0, (t) are thus of the normalized fomm

2nkt 2nkt
and J% sin
T T

2 cos

The kth observable coordinates are therefore

T T
2kt 2nkt
V2 [ v(t) cos —— dt and V2 [ y(t) sin dt
, T i T
0 0

These observable coordinates are proportional to the
Fourier Series coefficlents of the received signal. Note, how=-

h coordinates,

ever, that the variance associated with the kt
cka, increases with increasing k. This is reflected in the fact
that higher order coordinates are more heavily weighted before

being sumed to form the output level of the receiver (See Figure).



